[1] DAVIES M J, ARODA V R, COLLINS B S, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)[J]. Diabetes Care, 2022, 45(11): 2753-2786. [2] 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13 (4): 315-409. [3] CRAWFORD S O, HOOGEVEEN R C, BRANCATI F L, et al. Association of blood lactate with type 2 diabetes: the atherosclerosis risk in communities carotid mri study[J]. Int J Epidemiol, 2010, 39(6): 1647-1655. [4] RISHU A H, KHAN R, AL-DORZI H M, et al. Even mild hyperlactatemia is associated with increased mortality in critically ill patients[J]. Crit Care, 2013, 17(5): R197. [5] WU Y, DONG Y, ATEFI M, et al. Lactate, a neglected factor for diabetes and cancer interaction[J]. Mediators Inflamm, 2016, 2016: 6456018. [6] BRINKMANN C, BRIXIUS K. Hyperlactatemia in type 2 diabetes: can physical training help[J]. J Diabetes Complications, 2015, 29(7): 965-969. [7] ZHAO T, LE S, FREITAG N, et al. Effect of chronic exercise training on blood lactate metabolism among patients with type 2 diabetes mellitus: a systematic review and meta-analysis[J]. Front Physiol, 2021, 12: 652023. [8] LIRA V A, BENTON C R, YAN Z, et al. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity[J]. Am J Physiol Endocrinol Metab, 2010, 299(2): E145-E161. [9] ALLENBERG K, JOHANSEN K, SALTIN B. Skeletal muscle adaptations to physical training in type II (non-insulin-dependent) diabetes mellitus[J]. Acta Med Scand, 1988, 223(4): 365-373. [10] WILSON J M, LOENNEKE J P, JO E, et al. The effects of endurance, strength, and power training on muscle fiber type shifting[J]. J Strength Cond Res, 2012, 26(6): 1724-1729. [11] VAN TIENEN F, PRAET S F, DE FEYTER H, et al. Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes[J]. J Clin Endocrinol Metab, 2012, 97(9): 3261-3269. [12] BERHANE F, FITE A, DABOUL N, et al. Plasma lactate levels increase during hyperinsulinemic euglycemic clamp and oral glucose tolerance test[J]. J Diabetes Res, 2015, 2015: 102054. [13] HAWLEY J A, LESSARD S J. Exercise training-induced improvements in insulin action[J]. Acta Physiol (Oxf), 2008, 192(1): 127-135. [14] JANSSON P, LARSSON A, SMITH U, et al. Lactate release from the subcutaneous tissue in lean and obese men[J]. J Clin Invest, 1994, 93(1): 240-246. [15] ABE T, SONG J S, BELL Z W, et al. Comparisons of calorie restriction and structured exercise on reductions in visceral and abdominal subcutaneous adipose tissue: a systematic review[J]. Eur J Clin Nutr, 2022, 76(2): 184-195. [16] CORVERA S, GEALEKMAN O. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes[J]. Biochim Biophys Acta, 2014, 1842(3): 463-472. [17] STANFORD K I, MIDDELBEEK R J W, TOWNSEND K L, et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis[J]. Diabetes, 2015, 64(6): 2002-2014. [18] PY G, LAMBERT K, PEREZ-MARTIN A, et al. Impaired sarcolemmal vesicle lactate uptake and skeletal muscle MCT1 and MCT4 expression in obese Zucker rats[J]. Am J Physiol Endocrinol Metab, 2001, 281(6): E1308-E1315. [19] JUEL C, HOLTEN M K, DELA F. Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans[J]. J Physiol, 2004, 556(1): 297-304. [20] OPITZ D, LENZEN E, SCHIFFER T, et al. Endurance training alters skeletal muscle MCT contents in T2DM men[J]. Int J Sports Med, 2014, 35(13): 1065-1071. [21] MONDON C E, JONES I R, AZHAR S, et al. Lactate production and pyruvate dehydrogenase activity in fat and skeletal muscle from diabetic rats[J]. Diabetes, 1992, 41(12): 1547-1554. [22] WU P, INSKEEP K, BOWKER-KINLEY M M, et al. Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes[J]. Diabetes, 1999, 48(8): 1593-1599. [23] CONSITT L A, SAXENA G, SANEDA A, et al. Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training[J]. Am J Physiol Endocrinol Metab, 2016, 311(1): E145-E156. [24] BIENSØ R S, OLESEN J, GLIEMANN L, et al. Effects of exercise training on regulation of skeletal muscle glucose metabolism in elderly men[J]. J Gerontol A Biol Sci Med Sci, 2015, 70(7): 866-872. [25] DE SOUSA M V, FUKUI R, DAGOGO-JACK S, et al. Biomarkers of insulin action during single soccer sessions before and after a 12-week training period in type 2 diabetes patients on a caloric-restricted diet[J]. Physiol Behav, 2019, 209: 112618. [26] WIDJAJA A, MORRIS R J, LEVY J C, et al. Within-and between-subject variation in commonly measured anthropometric and biochemical variables[J]. Clin Chem, 1999, 45(4): 561-566. [27] FORETZ M, GUIGAS B, VIOLLET B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2019, 15(10): 569-589. [28] MADIRAJU A K, ERION D M, RAHIMI Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase[J]. Nature, 2014, 510(7506): 542-546. [29] KIM Y D, PARK K-G, LEE Y-S, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP[J]. Diabetes, 2008, 57(2): 306-314. [30] ZHOU T, XU X, DU M, et al. A preclinical overview of metformin for the treatment of type 2 diabetes[J]. Biomed Pharmacother, 2018, 106: 1227-1235. [31] STEPHENNE X, FORETZ M, TALEUX N, et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status[J]. Diabetologia, 2011,54(12): 3101-3110. [32] WANG Y, AN H, LIU T, et al. Metformin improves mitochondrial respiratory activity through activation of AMPK[J]. Cell Rep, 2019, 29(6): 1511-1523.e1515. [33] ANDRZEJEWSKI S, GRAVEL S P, POLLAK M, et al. Metformin directly acts on mitochondria to alter cellular bioenergetics[J]. Cancer Metab, 2014, 2(1): 1-14. [34] SALPETER S, GREYBER E, PASTERNAK G, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus[J]. Cochrane Database Syst Rev, 2010, 4: CD002967. [35] DAVIS T M, JACKSON D, DAVIS W A, et al. The relationship between metformin therapy and the fasting plasma lactate in type 2 diabetes: The Fremantle Diabetes Study[J]. Br J Clin Pharmacol, 2001, 52(2): 137-144. [36] LOVE-OSBORNE K, SHEEDER J, ZEITLER P. Addition of metformin to a lifestyle modification program in adolescents with insulin resistance[J]. J Pediatr, 2008, 152(6): 817-822. [37] RAMACHANDRAN A, SNEHALATHA C, MARY S, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1)[J]. Diabetologia, 2006, 49(2): 289-297. [38] BOULÉ N G, KENNY G P, LAROSE J, et al. Does metformin modify the effect on glycaemic control of aerobic exercise, resistance exercise or both[J]. Diabetologia, 2013, 56(11): 2378-2382. [39] KONOPKA A R, LAURIN J L, SCHOENBERG H M, et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults[J]. Aging Cell, 2019, 18(1): e12880. [40] TERADA T, BOULÉ N G. Does metformin therapy influence the effects of intensive lifestyle intervention? Exploring the interaction between first line therapies in the Look AHEAD trial[J]. Metabolism, 2019, 94: 39-46. [41] KANALEY J A, COLBERG S R, CORCORAN M H, et al. Exercise/physical activity in individuals with type 2 diabetes: a consensus statement from the American College of Sports Medicine[J]. Med Sci Sports Exerc, 2022, 54(2): 353-368. [42] CZYYK A, LAO B, BARTOSIEWICZ W, et al. The effect of short-term administration of antidiabetic biguanide derivatives on the blood lactate levels in healthy subjects[J]. Diabetologia, 1978, 14(2): 89-94. [43] MALIN S K, STEPHENS B R, SHAROFF C G, et al. Metformin’s effect on exercise and postexercise substrate oxidation[J]. Int J Sport Nutr Exerc Metab, 2010, 20(1): 63-71. [44] MORENO-CABAAS A, MORALES-PALOMO F, ÁLVAREZ-JIMENEZ L, et al. Metformin and exercise effects on postprandial insulin sensitivity and glucose kinetics in pre-and-diabetic adults[J]. Am J Physiol Endocrinol Metab, 2023, 325(4): E310-E324. [45] GUDAT U, CONVENT G, HEINEMANN L. Metformin and exercise: no additive effect on blood lactate levels in health volunteers[J]. Diabet Med, 1997, 14(2): 138-142. [46] CUNHA M R, DA SILVA M E, MACHADO H A, et al. The effects of metformin and glibenclamide on glucose metabolism, counter-regulatory hormones and cardiovascular responses in women with type 2 diabetes during exercise of moderate intensity[J]. Diabet Med, 2007, 24(6): 592-599. [47] MALIN S K, GERBER R, CHIPKIN S R, et al. Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes[J]. Diabetes Care, 2011, 35(1): 131-136. [48] DUNN C J, PETERS D H. Metformin[J]. Drugs, 1995, 49: 721-749. [49] HUANG T, LU C, SCHUMANN M, et al. Timing of exercise affects glycemic control in type 2 diabetes patients treated with metformin[J]. J Diabetes Res, 2018, 2018: 2483273. [50] MOHOLDT T, PARR E B, DEVLIN B L, et al. The effect of morning vs evening exercise training on glycaemic control and serum metabolites in overweight/obese men: a randomised trial[J]. Diabetologia, 2021, 64(9): 2061-2076. |